25 ноября 2017 Г. Нанотехнологии и наноматериалы Российские нанотехнологии STRF.RU регистрация вход

   
Подписка
Главная / Новости и События / Новости нанотехнологий
Редколлегия
Контакты
Размещение рекламы
Партнёры
форум
В мире НАНО
Реклама

ХИМИК.РУ

Новости и События

Новости нанотехнологий

30.06.2016   Российские физики создали сверхточную «квантовую линейку»

Физики из Российского квантового центра, МФТИ, ФИАНа и парижского Института оптики придумали метод создавать особое состояние квантовой запутанности, которое позволяет получить сверхточную линейку, способную измерять расстояние в сотни километров с точностью до миллиардных долей метра. Результаты исследований опубликованы в престижном научном журнале Nature Communications.

«Эта техника позволяет использовать квантовые эффекты для повышения точности измерения расстояния между наблюдателями, которые отделены друг от друга средой с потерями. В такой среде квантовые характеристики света легко разрушаются», – говорит Александр Львовский, соавтор статьи, руководитель научного коллектива в РКЦ, выполнившего исследование, и профессор университета Калгари.

Предметом исследований стали так называемые N00N-состояния фотонов, в которых возникает суперпозиция пространственных положений не одного фотона, а сразу множества. То есть многофотонный лазерный импульс одновременно находится в двух точках пространства.

Эти состояния могут иметь большое значение для метрологии, точнее для резкого улучшения возможностей оптических интерферометров, например, для тех, что использовались для открытия гравитационных волн в рамках проекта LIGO.

В оптических интерферометрах лучи лазера, приходящие от двух зеркал, «смешиваются» друг с другом, и возникает интерференция – волны света, накладываясь, либо гасят друг друга, либо усиливают – в зависимости от точного положения зеркал. Это позволяет измерять их микроскопические смещения, потому что расстояние между полосами равно длине волны – примерно 0,5–1 микрона. Однако для многих экспериментов нужна еще более высокая точность. Например, для обнаружения гравитационных волн требовалось измерять смещения, сопоставимые с диаметром протона.

И здесь могут пригодиться N00N-состояния, поскольку при интерференции они создают полосы, расстояния между которыми много меньше длины волны. Соответственно, повышается и точность измерения расстояний.

«Проблема в том, что N00N-состояния чрезвычайно чувствительны к потерям. Проходя большие расстояния – как в атмосфере, так и по волоконным каналам – луч света неминуемо ослабляется. Для обычного, классического света это не так страшно. А вот если запутанное световое состояние пройдёт через среду даже с небольшими потерями, и запутанность «распутается», и никакой выгоды мы от неё уже не получим», – говорит Львовский.

Он и его коллеги наши способ решить эту проблему.

«Есть такое явление – обмен запутанностями. Допустим, у Алисы и Боба (так в физике называют участников обмена квантовыми объектами) есть по запутанному состоянию. Тогда если я возьму одну часть запутанного состояния от Алисы, вторую от Боба, и проведу над ними совместное измерение, то оставшиеся части состояний Алисы и Боба тоже станут запутанными, хотя до этого никогда не взаимодействовали», – говорит Львовский.

«В нашем эксперименте, который проводился в лаборатории РКЦ, Алиса и Боб создают два запутанных состояния. И посылают одну из частей в среду с потерями, которую в нашем опыте моделирует затемненное стекло. Третий наблюдатель, посередине между Алисой и Бобом, проводит совместное измерение на этих частях. В результате происходит обмен запутанностями: оставшиеся части состояний Алисы и Боба оказываются в состоянии N00N. А поскольку эти части потерь не испытали, они выказывают свои квантовые свойства в полной мере», – объясняет ведущий автор статьи, научный сотрудник РКЦ и аспирант МФТИ Александр Уланов.

По его словам, уровень потерь в этом стекле соответствовал толще атмосферы примерно в 50 километров, а в целом этот метод позволяет обеспечить сверхточные измерения дистанций в сотни километров, что вполне удовлетворяет современным требованиям – плечо интерферометра LIGO, например, имеет длину около 4 километров.

NanoNewsNet



обсудить публикацию

версия для печати



ай вао
Интервью

Композиты на острие 3D-принтинга


Учёные СПбПУ и Сколтеха разрабатывают «софт» и «железо» для трёхмерной печати композиционных изделий

читать полностью читать полностью




Acta Naturae



© ООО «Парк-медиа», 2007-2008

Разработка - Metric

Все права защищены
Рейтинг@Mail.ru Rambler's Top100